
CNN-based EM / Track ID
 P. Płoński, D. Stefan, R. Sulej

1

• EM vs. track-like cluster ID, basic idea

• update on implementations in LArSoft

• target developments for the next weeks

Many slides reused from previous meetings, sorry for those who have alreade seen this!

LArIAT discussions, July 29, 2016

2

deconvoluted ADC

single point prediction

cluster prediction

track / shower decision

EM-like / track-like cluster identification flow:

(as usual, old CNN on these pictures!)

2

●

CNN cluster prediction values

point ID’s based on

surrounding patch

LArIAT discussions, July 29, 2016

3

CNN results as of today: p+ 2 GeV/c in protoDUNE SP

All OK

induction1

collection

track / shower decision

track / shower decision

LArIAT discussions, July 29, 2016

4

CNN results as of today: p+ 2 GeV/c in protoDUNE SP

All OK

induction1

collection

cluster prediction

track / shower decision

track / shower decision

Even though CNN was not specially tuned for

Michel’s, the prediction values are pretty „decided”

LArIAT discussions, July 29, 2016

5

CNN results as of today: p+ 2 GeV/c in protoDUNE SP

induction1

collection

cluster prediction

cluster prediction

track / shower decision

track / shower decision

The most confused one…

• many near-the-threshold prediction values

• need simple work on threshold

optimization – can be good to get familiar

with the tools

• may be also limited by patch size/resolution

LArIAT discussions, July 29, 2016

6

 simulation by Elisabeth,

picture from Dorota’s slides

LArIAT discussions, July 29, 2016

Stopping muons are important

for protoDUNEs callibration

(various analyses are coming).

Many stoppers per each event!

Here the uBoone approach is

very reasonable:

RNN for stopper localization.

7

Cluster classification (ClusterCrawler as input, decision made of hit classification)

CNN: 96.2% track / 96.6% EM correct cluster ID rate (2GeV/c p+ in protoDUNE)

• module for tagging clusters and unclustered hits pushed yesterday

CNN as of today

usual mistake sources:

• most cases: complicated configurations, especially if on the image boundaries

• some orientation dependence: more difficult recognition for particles if direction strictly row or column of

pixels less downsampling may help here

• long track-like electrons

• too small patch (important context not seen) / low drift resolution (electron features downsampled)

• sometimes clustering makes its own mistake and merges two objects of different ID…

• seems resolved now: short hadron near cascade / vertex

 large training set: >5M patches, many topologies: no overtraining at all!

 trainined on collection and induction views together (can do dedicated models, but prefer single one

until there is well simulated difference between views)

 next: increase resolution in drift direction, increase noise, try applying on real data

 next (waiting as well): vertex classification, similar approach, priority: mue decay points, what else?

LArIAT discussions, July 29, 2016

8

all hits EM-like parts

EmTrackClusterId module

3D reco for reference

(EM-like not yet excluded)

9

• Vertex identification
– support tracking with interaction/decay finding

– select EM shower starting points (not trivial in low energy)

data preparation code being validated (still some vtx

missed, threshold to be tuned for reasonable visibility

criteria, …)

• Neutrino interaction classification
– force classifier to be focused on the vertex features

– try to be sensitive to the „gap” in full neutrino events

• need more events to build training set (only 1 training

image pair/triplet per 1 event)

• more complex (than very simple) CNN may be needed

• uses larger patch arount the vertex and less

downsampled drift

• more careful when producing data files to avoid really

huge volumes…

Vertex classification: similar „basic block” to EM/track ID

DS@HEP Workshop, NYC, July 7, 2016

What kinds of interactions (or decay)

finding should be the priority?

10

Vertex on the track reconstructed (or missed) by PMA

LArIAT discussions, July 29, 2016

– particle interacts, daughters reconstructed,

interaction vertex found: all OK

– was there any kink missed along the primary?

– particle interacts, one of daughters co-linear with

primary, clustered and reconstructed as single track

– can CNN be trained to identify such vertex?

– can it distinguish interaction from a delta ray vertex?

– if just a single track made: run through the trajectory

an find any missed vertex? what efficiency is

possible?

– e and stopping pe nearly identical

– decay vertex often not precisely located (muon

includes electron or vice versa)

Vertex reco in PMA is based on individual 3D tracks. Vertices and tracks are associated (and

all together is associated to hierarchy of PFParticles). Result depends (to some extent) on

clustering and hits. Direct use of ADC may help to recover a lot…

11

CNN machinery inside & outside LArSoft (1)

Use Keras as a primary toolkit for CNN training

• training data out of LArSoft: part of preparatory work in LArSoft and part in Python scripts

• CNN model prepared in Python, model & weights dumped to plain text („small” model = ~100MB)

Models applied in LArSoft

• simple C++ code to load and run Keras models from LArSoft modules

• Tensorflow to be added to LArSoft ups then a good way to calculate CNN output, this is rather

long term plan: need to work out a good, generic interface (expect progress after Sept.)

 Have a look at larreco/RecoAlg/ImagePatternAlgs/Keras:

- simple code to run Keras models

- we are using it with our ideas for CNN in LArTPC, but you can experiment by yourself

- if some architecture configuration missing – we can add it, such changes are not

breaking any higher-level code already using keras2cpp

- basic code wrapped in an algorithm class and applied in a couple of modules you

may use it at any low/high level

 EmTrackClusterId module in larreco/RecoAlg/ImagePatternAlgs:

– input: clusters and single hits; output: EM-like clusters (incl. 1-hit clusters)

LArIAT discussions, July 29, 2016

keras.io

12

CNN machinery inside & outside LArSoft (2)

Base algorithms for data preparation
• larreco/RecoAlg/ImagePatternAlgs/PointIdAlg (will add other algorithms as needed)

• DataProviderAlg: caches downsampled matrix of ADC, functionality for making 2D patches or flat

vectors around wire/drift point

• TrainingDataAlg: prepares map of PDG codes and interaction vertex flags corresponding to ADC

matrix

• PointIdAlg: reads-in network model, calculate network output for any wire/drift coordinates, or

accumulated output for a vector of hits (cluster)

• if more functionality is needed at this level (e.g. different patch size in wire and drift directions):

should not break modules

Small, dedicated modules for each application (larreco/RecoAlg/ImagePatternAlgs)

• PointIdTrainingData & PointIdTrainingNuevent modules: dump training data (ADC / PDG / vertex

maps), can select view and TPC, can look for neutrino interaction in fiducial volume (so the interaction

vertex and needed part of the event is well seen)

• PointIdEffTest module: this one is testing efficiency and shows how to apply network to check if it is

EM activity or track-like cluster

• Network model is the exchangeable part at the level of modules: processing scheme remains, just a

better model can be inserted.

• final CNN models for various tasks and detector configurations should go to experimentXY_pardata

LArIAT discussions, July 29, 2016

13

#include "services_dune.fcl"

#include "caldata_dune.fcl"

#include "imagepatternalgs.fcl"

process_name: PointId

services:

{

 TFileService: { fileName: "reco_hist.root" }

 MemoryTracker: {}

 TimeTracker: {}

 RandomNumberGenerator: {}

 message: @local::dune_message_services_prod_debug

 FileCatalogMetadata: @local::art_file_catalog_mc

 @table::protodune_services

 @table::protodune_simulation_services

}

source:

{

 module_type: RootInput

 maxEvents: -1

}

physics:

{

 analyzers:

 {

 pointid: @local::standard_pointidtrainingdata

 testeff: @local::standard_pointidefftest

 }

 reco: []

 anadata: [pointid]

 anatest: [testeff]

 stream1: [out1]

 trigger_paths: [reco]

 end_paths: [anatest]

}

outputs:

{

 out1:

 {

 module_type: RootOutput

 fileName: "%ifb_%tc_reco.root"

 dataTier: "full-reconstructed"

 compressionLevel: 1

 }

}

physics.analyzers.testeff.PointIdAlg.NNetModelFile: "/home/robert/fnal/v5/cnn/small1_sgd_lorate_8k_coll.nnet"

physics.analyzers.testeff.PointIdAlg.PatchSize: 32 # keep it corresponding to what model is expecting

physics.analyzers.testeff.PointIdAlg.DriftWindow: 10 # same note as above

physics.analyzers.testeff.HitsModuleLabel: "linecluster"

physics.analyzers.testeff.ClusterModuleLabel: "linecluster"

physics.analyzers.testeff.View: 2 # select which view is tested

physics.analyzers.testeff.Threshold: 0.4 # threshold for EM / track discrimination (0:EM, 1:track)

physics.analyzers.testeff.SaveHitsFile: false # text file with more detailed output from classification

physics.analyzers.pointid.TrainingDataAlg.SimulationLabel: "largeant"

physics.analyzers.pointid.TrainingDataAlg.WireLabel: "caldata"

physics.analyzers.pointid.TrainingDataAlg.SaveVtxFlags: true # pdg code is 2 lower bytes, vtx flags are 2 higher

physics.analyzers.pointid.TrainingDataAlg.PatchSize: 32

physics.analyzers.pointid.TrainingDataAlg.DriftWindow: 10

physics.analyzers.pointid.SelectedTPC: [2] # selected TPC and views can be dumped

physics.analyzers.pointid.SelectedView: [0]

physics.analyzers.pointid.OutTextFilePath: "/home/robert/fnal/v5/cnn/raw_data"

The job configuration for modules:

training data, testing models

• pointid here is making the training data files (that are

further processed in python scripts)

• testeff applies CNN to clusters

things to be set up

LArIAT discussions, July 29, 2016

14

#include "services_dune.fcl"

#include "caldata_dune.fcl"

#include "imagepatternalgs.fcl"

process_name: PointId

services:

{

 TFileService: { fileName: "reco_hist.root" }

 MemoryTracker: {}

 TimeTracker: {}

 RandomNumberGenerator: {}

 message: @local::dune_message_services_prod_debug

 FileCatalogMetadata: @local::art_file_catalog_mc

 @table::protodune_services

 @table::protodune_simulation_services

}

source:

{

 module_type: RootInput

 maxEvents: -1

}

physics:

{

 producers:

 {

 emtrackid: @local::standard_emtrackclusterid

 }

 reco: [emtrackid]

 stream1: [out1]

 trigger_paths: [reco]

 end_paths: [stream1]

}

outputs:

{

 out1:

 {

 module_type: RootOutput

 fileName: "%ifb_%tc_reco.root"

 dataTier: "full-reconstructed"

 compressionLevel: 1

 }

}

physics.producers.emtrackid.PointIdAlg.NNetModelFile: "/home/robert/fnal/v6/cnn/small1_sgd_lorate_8k_coll_ind.nnet"

physics.producers.emtrackid.PointIdAlg.PatchSize: 32 # keep it corresponding to what model is expecting

physics.producers.emtrackid.PointIdAlg.DriftWindow: 10 # same note as above

physics.producers.emtrackid.HitModuleLabel: "linecluster" # hits used to create clusters (use „” if single hits should not be tagged)

physics.producers.emtrackid.ClusterModuleLabel: "linecluster" # clusters to be tagged

physics.producers.emtrackid.Threshold: 0.3 # threshold for EM / track discrimination (0:EM, 1:track)

physics.producers.emtrackid.Views: [2] # selected views can be processed (or all if the list is empty)

The job configuration for modules:

production: tagging clusters and hits

• emtrackid applies CNN to clusters and optionally

unclustered hits

• the output: new collection of clusters, tagged as EM

• today: only EM clusters are outputted, single EM-like hits

are added to the cluster collection as 1-hit clusters,

everything produced by the module was recognized as EM

things to be set up

LArIAT discussions, July 29, 2016

Please, contact us for support with applying / training models.

15 LArIAT discussions, July 29, 2016

Summary

• All components needed to apply EM/track tagging in place

• CNN model prepared on 2GeV/c p+, 5mm wire pitch, should work a broad class of

events. Likely need another model for 4mm pitch: one of easy things to start with

LArIAT simulations.

• Noise should be studied: how much is acceptable, what „patterns” are in data, is this

well modeled with MC?

• Application on data and feedback is needed – this is the real test of the tool.

• Vertex identification / classification is the next thing to run. The same idea of patches.

Timescale: Sept. DUNE Collaboration meeting.

• Option in PMA module to match PFParticle hierarchy with test-beam particle to be

added: how to consume reco info from upstream detectors?

• All of these are interesting tools and fresh approach: but for physics results a

lot needs to be understood, whar are the systematics, how does it work on real

data…!

